Article

Allometric Modelling of the Vegetative Carbon Content in Avicennia Marina in a Tropical Mangrove Ecosystem

Mathuranga Vickneswaran and W. M. Dimuthu Nilmini Wijeyaratne*

Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, 11600, Sri Lanka

*Correspondence: dimuthu.wijeyaratne@kln.ac.lk

Abstract: Mangrove ecosystems play an important role in managing global climate change by sequestering carbon and mitigating the concentration of atmospheric carbon dioxide. This study constructed allometric equations to evaluate the carbon sequestration capacity of the stems, leaves, and above-ground roots of Avicennia marina, a prevalent species in a distinctive mangrove ecosystem in northern Sri Lanka. This study examined the allometric relationships between the carbon content of leaves (CL), stems (Cs), and above-ground roots (CR) and specific, measurable tree parameters of Avicennia marina, such as diameter at breast height (DBH), merchantable stem height (MSH), crown height (CH), leaf area (LA), total tree height (TH), above-ground root height (RH), and above-ground root diameter (RD). Stepwise regression modelling with backward elimination was used to develop these relationships in SPSS Version 26 statistical software. The allometric equations derived from the models for carbon content of stems (Ln Cs = -0.922 + 0.72 Ln DBH + 0.17 Ln LA), leaves (Ln CL = -0.647 + 0.335 Ln LA), and above-ground roots (Ln CR = -5.5 + 0.463 Ln RD) showed a reliability of 84.9%, 89.9%, and 62.5%, respectively. These models were identified as the best fit for predicting the respective carbon contents. They permit unrestricted reuse, distribution, and reproduction provided that the original article is properly cited. Based on the model bias value, modelling efficiency value, p-value, and residual plot, these models were identified as the best fit to predict the respective carbon contents of Avicennia marina. The allometric models developed in this study will be useful for monitoring the annual carbon sequestration potential of mangrove ecosystems in the Jaffna Lagoon in Sri Lanka. These models will also provide insight for assessing tradeable carbon credits in alignment with the REDD+ and Blue Carbon frameworks.

Keywords: Carbon sequestration; Jaffna lagoon; Sri Lanka


https://doi.org/10.59711/jims.12.110021

References

1. Nyanga, C. The Role of Mangroves Forests in Decarbonizing the Atmosphere. In Carbon-Based Material for Environmental Protection and Remediation; Bartoli, M., Frediani, M., Rosi, L., Eds.; IntechOpen, 2020 ISBN 978-1-78984-586-0. [Crossref]

2. Bimrah, K.; Dasgupta, R.; Hashimoto, S.; Saizen, I.; Dhyani, S. Ecosystem Services of Mangroves: A Systematic Review and Synthesis of Contemporary Scientific Literature. Sustainability 2022, 14, doi:10.3390/su141912051. [Crossref]

3. Kumari, P.; Singh, J.K.; Pathak, B. Potential Contribution of Multifunctional Mangrove Resources and Its Conservation. In Biotechnological Utilization of Mangrove Resources; 2020; pp. 1–26 ISBN 978-0-12-819532-1. [Crossref]

4. Choudhary, B.; Dhar, V.; Pawase, A.S. Blue Carbon and the Role of Mangroves in Carbon Sequestration: Its Mechanisms, Estimation, Human Impacts and Conservation Strategies for Economic Incentives. J. Sea Res. 2024, 199, doi:10.1016/j.seares.2024.102504. [Crossref]

5. Wijeyaratne, W.M.D.N.; Liyanage, P.M. Allometric Modelling of the Stem Carbon Content of Rhizophora Mucronata in a Tropical Mangrove Ecosystem. Int. J. For. Res. 2020, 1–6, doi:10.1155/2020/8849413. [Crossref]

6. Kairo, J.; Mbatha, A.; Murithi, M.M.; Mungai, F. Total Ecosystem Carbon Stocks of Mangroves in Lamu, Kenya; and Their Potential Contributions to the Climate Change Agenda in the Country. Front. For. Glob. Change 2021, 4, doi:10.3389/ffgc.2021.709227. [Crossref]

7. Pang, S.; Abdul Majid, M.; Perera, H.A.C.C.; Sarkar, M.S.I.; Ning, J.; Zhai, W.; Guo, R.; Deng, Y.; Zhang, H. A Systematic Review and Global Trends on Blue Carbon and Sustainable Development: A Bibliometric Study from 2012 to 2023. Sustainability 2024, 16, doi:10.3390/su16062473. [Crossref]

8. Arifanti, V.B.; Kauffman, J.B.; Subarno; Ilman, M.; Tosiani, A.; Novita, N. Contributions of Mangrove Conservation and Restoration to Climate Change Mitigation in Indonesia. Glob. Change Biol. 2022, 28, 4523–4538, doi:10.1111/gcb.16216. [Crossref]

9. Veettil, B.K.; Wickramasinghe, D.; Amarakoon, V. Mangrove Forests in Sri Lanka: An Updated Review on Distribution, Diversity, Current State of Research and Future Perspectives. Reg. Stud. Mar. Sci. 2023, 62, doi:10.1016/j.rsma.2023.102932. [Crossref]

10. Rathnayaka, H.; Perera, H.A.C.C.; Perera, L. Analyses of Biometric Growth Parameters, Feeding Composition and Fisheries Aspects of Auxis Thazard (Frigate Tuna) of the East, West and South Coasts of Sri Lanka. J. Isl. Mar. Stud. 2024, 2, doi:10.59711/jims.11.110005. [Crossref]

11. Veettil, B.K. Current Status of Mangrove Vegetation in Batticaloa Lagoon, Sri Lanka, Using High-Resolution Satellite Imagery. J. Coast. Conserv. 2022, 26, doi:10.1007/s11852-022-00923-x. [Crossref]

12. Wickramasinghe, S.; Wijayasinghe, M.; Sarathchandra, C. Sri Lankan Mangroves: Biodiversity, Livelihoods, and Conservation. In Mangroves: Biodiversity, Livelihoods and Conservation; Das, S.C., Ashton, E.C., Pullaiah, Eds.; Springer: Singapore, 2022 ISBN 978-981-19-0519-3. [Google Scholar]

13. Perera, K.A.R.S.; De Silva, K.H.W.L.; Amarasinghe, M.D. Potential Impact of Predicted Sea Level Rise on Carbon Sink Function of Mangrove Ecosystems with Special Reference to Negombo Estuary, Sri Lanka. Glob. Planet. Change 2018, 161, 162–171, doi:10.1016/j.gloplacha.2017.12.016. [Crossref]

14. Perera, K.A.R.S.; De Silva, W.; Amaransinghe, M.D. Carbon Stocks in Mangrove Ecosystems of Sri Lanka: Average Contributions and Determinants of Sequestration Potential. Ocean Coast. Manag. 2024, 257, doi:10.1016/j.ocecoaman.2024.107357. [Crossref]

15. Estrada, G.C.D.; Soares, M.L.G.; Fernadez, V.; De Almeida, P.M.M. The Economic Evaluation of Carbon Storage and Sequestration as Ecosystem Services of Mangroves: A Case Study from Southeastern Brazil. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 29–35, doi:10.1080/21513732.2014.963676. [Crossref]

16. Kusumaningtyas, M.A.; Hutahaean, A.A.; Fischer, H.W.; Pérez-Mayo, M.; Ransby, D.; Jennerjahn, T.C. Variability in the Organic Carbon Stocks, Sources, and Accumulation Rates of Indonesian Mangrove Ecosystems. Estuar. Coast. Shelf Sci. 2019, 218, 310–323, doi:10.1016/j.ecss.2018.12.007. [Crossref]

17. Packiyanathan, R.; Wijesundara, C.S. Distribution of Mangrove Species in the Islands of Jaffna Peninsula, Sri Lanka. Proc. Int. For. Environ. Symp. 2016, doi:10.31357/fesympo.v21i0.3046. [Google Scholar]

18. Priyashantha, A.K.H.; Taufikurahman, T. Mangroves of Sri Lanka: Distribution, Status and Conservation Requirements. Trop. Plant Res. 2020, 7, 654–668, doi:10.22271/tpr.2020.v7.i3.083. [Crossref]

19. Nijamdeen, T.W.G.F.M.; Peruzzo, S.; Kodikara, K.A.S.; Ratsimbazafy, H.A.; Nijamdeen, T.W.G.F.A.; Thahira, T.; Sajeevan, T.; Kugathasan, D.; Hugé, J.; Dahdouh-Guebas, F. Stakeholder Perceptions in Mangrove Management in the Jaffna Peninsula, Sri Lanka. For. Policy Econ. 2024, 164, doi:10.1016/j.forpol.2024.103236. [Crossref]

20. Wijeyaratne, W.M.D.N.; Liyanage, P.M. Development of Allometric Equations to Estimate the Stem Carbon Content of Lumnitzera Racemosa and Avicennia Marina in a Tropical Mangrove Ecosystem: A Novel Non-Destructive Approach. Acta Ecol. Sin. 2022, 42, 95–100, doi:10.1016/j.chnaes.2021.08.012. [Crossref]

21. Guendehou, G.H.S.; Lehtonen, A. Guidance for Tree Measurement in Tropical Forest Ecosystems Using Non-Destructive Sampling to Develop Stem Biomass and Volume Models; Working papers of the Finnish Forest Research Institute; 2014. [Google Scholar]

22. Kebede, B.; Soromessa, T. Allometric Equations for Aboveground Biomass Estimation of Olea Europaea L. Subsp. Cuspidata in Mana Angetu Forest. Ecosyst. Health Sustain. 2018, 4, 1–12, doi:10.1080/20964129.2018.1433951. [Crossref]

23. Sabin, B.S. Relationship between Allometric Variables and Biomass in Western Juniper (Juniperus Occidentalis). M.S. thesis, Oregon State University: Corvallis, Oregon, 2008. [Google Scholar]

24. Subasinghe, S.M.C.U.P.; Harpriya, A.M.R. Prediction of Stem Biomass of Pinus Caribaea Growing in the Low Country Wet Zone of Sri Lanka. J. Trop. For. Environ. 2014, 4, 40–49, doi:10.13140/2.1.4645.6967. [Crossref]

25. Ávila-Acosta, C.R.; Domínguez-Domínguez, M.; Vázquez-Navarrete, C.J.; Acosta-Pech, R.G.; Martínez-Zurimendi, P. Allometric Models of Aboveground Biomass in Mangroves Compared with Those of the Climate Action Reserve Standard Applied in the Carbon Market. Resources 2024, 13, doi:10.3390/resources13090129. [Crossref]

26. Gerona-Daga, M.E.B.; Salmo, S.G. A Systematic Review of Mangrove Restoration Studies in Southeast Asia: Challenges and Opportunities for the United Nation’s Decade on Ecosystem Restoration. Front. Mar. Sci. 2022, 9, doi:10.3389/fmars.2022.987737. [Crossref]

27. Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Oecologia 2005, 145, 87–99, doi:10.1007/s00442-005-0100-x. [Crossref]

28. Ray, R.; Mandal, S.K.; González, A.G.; Pokrovsky, O.S.; Jana, T.K. Storage and Recycling of Major and Trace Element in Mangroves. Sci. Total Environ. 2021, 780, doi:10.1016/j.scitotenv.2021.146379. [Crossref]

29. Estrada, G.C.D.; Soares, M.L.G.; Santos, D.M.C.; Fernandez, V.; De Almeida, P.M.M.; Estevam, M.R.D.M.; Machado, M.R.O. Allometric Models for Aboveground Biomass Estimation of the Mangrove Avicennia Schaueriana. Hydrobiologia 2014, 734, 171–185, doi:10.1007/s10750-014-1878-5. [Crossref]

30. Wang, C.; Zhao, X.; Chen, X.; Xiao, C.; Fan, X.; Shen, C.; Sun, M.; Shen, Z.; Zhang, Q. Variations in CO2 and CH4 Exchange in Response to Multiple Biophysical Factors from a Mangrove Wetland Park in Southeastern China. Atmosphere 2023, 14, doi:10.3390/atmos14050805. [Crossref]

31. Guo, C.; Loh, P.S.; Hu, J.; Chen, Z.; Pradit, S.; Oeurng, C.; Sok, T.; Mohamed, C.A.R.; Lee, C.W.; Bong, C.W.; et al. Factors Influencing Mangrove Carbon Storage and Its Response to Environmental Stress. Front. Mar. Sci. 2024, 11, doi:10.3389/fmars.2024.1410183. [Crossref]

32. Reef, R.; Ball, M.C.; Lovelock, C.E. The Impact of a Locust Plague on Mangroves of the Arid Western Australia Coast. J. Trop. Ecol. 2012, 28, 307–311, doi:10.1017/S0266467412000041. [Crossref]

33. Dookie, S.; Jaikishun, S.; Ansari, A.A. The Influence of Soil-Water Relations in Mangrove Forests on Ecosystem Balance. World Environ. 2023, 13, 9–28, doi:10.5923/j.env.20231301.02. [Google Scholar]

34. Singh, M.; Schwendenmann, L.; Wang, G.; Adame, M.F.; Mandlate, L.J.C. Changes in Mangrove Carbon Stocks and Exposure to Sea Level Rise (SLR) under Future Climate Scenarios. Sustainability 2022, 14, doi:10.3390/su14073873. [Crossref]

35. Harishma, K.M.; Sandeep, S.; Sreekumar, V.B. Biomass and Carbon Stocks in Mangrove Ecosystems of Kerala, Southwest Coast of India. Ecol. Process. 2020, 9, doi:10.1186/s13717-020-00227-8. [Crossref]

36. Capdeville, C.; Abdallah, K.; Walcker, R.; Rols, J.L.; Fromard, F.; Leflaive, J. Contrasted Resistance and Resilience of Two Mangrove Forests after Exposure to Long-Term and Short-Term Anthropic Disturbances. Mar. Environ. Res. 2019, 146, 12–23, doi:10.1016/j.marenvres.2019.03.002. [Crossref]

37. Panda, M.; Dash, B.R.; Sahu, S.C. Ecosystem Carbon Stock Variation along Forest Stand Ages: Insight from Eastern Coast Mangrove Ecosystem of India. Ecol. Process. 2025, 14, 1–16, doi:10.1186/s13717-025-00580-6. [Crossref]

38. Aabeyir, R.; Adu-Bredu, S.; Agyare, W.A.; Weir, M.J.C. Allometric Models for Estimating Aboveground Biomass in the Tropical Woodlands of Ghana, West Africa. For. Ecosyst. 2020, 7, doi:10.1186/s40663-020-00250-3. [Crossref]

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.